A Migrating Ciliary Gate Compartmentalizes the Site of Axoneme Assembly in Drosophila Spermatids

نویسندگان

  • Marcus L. Basiri
  • Andrew Ha
  • Abhishek Chadha
  • Nicole M. Clark
  • Andrey Polyanovsky
  • Boaz Cook
  • Tomer Avidor-Reiss
چکیده

BACKGROUND In most cells, the cilium is formed within a compartment separated from the cytoplasm. Entry into the ciliary compartment is regulated by a specialized gate located at the base of the cilium in a region known as the transition zone. The transition zone is closely associated with multiple structures of the ciliary base, including the centriole, axoneme, and ciliary membrane. However, the contribution of these structures to the ciliary gate remains unclear. RESULTS Here we report that, in Drosophila spermatids, a conserved module of transition zone proteins mutated in Meckel-Gruber syndrome (MKS), including Cep290, Mks1, B9d1, and B9d2, comprise a ciliary gate that continuously migrates away from the centriole to compartmentalize the growing axoneme tip. We show that Cep290 is essential for transition zone composition, compartmentalization of the axoneme tip, and axoneme integrity and find that MKS proteins also delimit a centriole-independent compartment in mouse spermatids. CONCLUSIONS Our findings demonstrate that the ciliary gate can migrate away from the base of the cilium, thereby functioning independently of the centriole and of a static interaction with the axoneme to compartmentalize the site of axoneme assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic dynein-dynactin complex is required for spermatid growth but not axoneme assembly in Drosophila.

Spermatids derived from a single gonial cell remain interconnected within a cyst and elongate by synchronized growth inside the testis in Drosophila. Cylindrical spectrin-rich elongation cones form at their distal ends during the growth. The mechanism underlying this process is poorly understood. We found that developing sperm tails were abnormally coiled at the growing ends inside the cysts in...

متن کامل

Drosophila KAP Interacts with the Kinesin II Motor Subunit KLP64D to Assemble Chordotonal Sensory Cilia, but Not Sperm Tails

BACKGROUND Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood. RESULTS We show that mutations in the Drosophila KAP (DmKap) gene...

متن کامل

Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells

The ciliary transition zone (TZ) is a complex structure found at the cilia base. Defects in TZ assembly are associated with human ciliopathies. In most eukaryotes, three protein complexes (CEP290, NPHP, and MKS) cooperate to build the TZ. We show that in Drosophila melanogaster, mild TZ defects are observed in the absence of MKS components. In contrast, Cby and Azi1 cooperate to build the TZ by...

متن کامل

The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate

Transition fibres (TFs), together with the transition zone (TZ), are basal ciliary structures thought to be crucial for cilium biogenesis and function by acting as a ciliary gate to regulate selective protein entry and exit. Here we demonstrate that the centriolar and basal body protein HYLS-1, the C. elegans orthologue of hydrolethalus syndrome protein 1, is required for TF formation, TZ organ...

متن کامل

Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila.

uncoordinated (unc) mutants of Drosophila, which lack transduction in ciliated mechanosensory neurons, do not produce motile sperm. Both sensory and spermatogenesis defects are associated with disrupted ciliary structures: mutant sensory neurons have truncated cilia, and sensory neurons and spermatids show defects in axoneme ultrastructure. unc encodes a novel protein with coiled-coil segments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014